This event has ended. View the official site or create your own event → Check it out
This event has ended. Create your own
View analytic
Wednesday, July 5 • 3:45pm - 4:45pm
KEYNOTE: Teaching data science to new useRs

Sign up or log in to save this to your schedule and see who's attending!

Abstract: How can we effectively and efficiently teach statistical thinking and computation to students with little to no background in either? How can we equip them with the skills and tools for reasoning with various types of data and leave them wanting to learn more? In this talk we describe an introductory data science course that is our (working) answer to these questions. The courses focuses on data acquisition and wrangling, exploratory data analysis, data visualization, and effective communication and approaching statistics from a model-based, instead of an inference-based, perspective. A heavy emphasis is placed on a consistent syntax (with tools from the `tidyverse`), reproducibility (with R Markdown) and version control and collaboration (with git/GitHub). We help ease the learning curve by avoiding local installation and supplementing out-of-class learning with interactive tools (like `tutor` and DataCamp). By the end of the semester teams of students work on fully reproducible data analysis projects on data they acquired, answering questions they care about. This talk will discuss in detail course structure, logistics, and pedagogical considerations as well as give examples from the case studies used in the course. We will also share student feedback and assessment of the success of the course in recruiting students to the statistical science major.

Wednesday July 5, 2017 3:45pm - 4:45pm
PLENARY Wild Gallery

Attendees (589)