Loading…
useR!2017 has ended
Back To Schedule
Friday, July 7 • 11:00am - 11:18am
Change Point Detection in Persistence Diagrams

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Feedback form is now closed.
Keywords: TDA, Persistence, Wavelets, Change-Point Detection
Webpages: https://github.com/speegled/cpbaywave
Topological data analysis (TDA) offers a multi-scale method to represent, visualize and interpret complex data by extracting topological features using persistent homology. We will focus on persistence diagrams, which are a way of representing the persistent homology of a point cloud. At their most basic level, persistence diagrams can give something similar to clustering information, but they also can give information about loops or other topological structures within a data set.
Wavelets are another multi-scale tool used to represent, visualize and interpret complex data. Wavelets offer a way of examining the local changes of a data set while also estimating the global trends.
We will present two algorithms that combine wavelets and persistence. First, we use a wavelet based density estimator to bootstrap confidence intervals in persistence diagrams. Wavelets seem well-suited for this, since if the underlying data lies on a manifold, then the density should have discontinuities that will need to be detected. Additionally, the wavelet based algorithm is fast enough to allow some cross-validation of the tuning parameters. Second, we present an algorithm for detecting the most likely change point of the persistent homology of a time series.
The majority of this talk will consist of presenting examples which will illustrate persistence diagrams, the change point detection algorith, and the types of changes in geometric and/or topological structure in data that can be detected via this algorithm.

Speakers

Friday July 7, 2017 11:00am - 11:18am
3.01 Wild Gallery