useR!2017 has ended
Back To Schedule
Wednesday, July 5 • 1:48pm - 2:06pm
Architectural Elements Enabling R for Big Data

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Feedback form is now closed.
Keywords: Big Data, Machine Learning, Scalability, High Perforance Computing, Graph Analytics
Webpages: https://oracle.com/goto/R
Big Data garners much attention, but how can enterprises extract value from data as found in the growing corporate data lakes or data reservoirs. Extracting value from big data requires high performance and scalable tools – both in hardware and software. Increasingly, enterprises take on massive machine learning and graph analytics projects, where the goal is to build models and analyze graphs involving multi-billion row tables or to partition analyses into thousands or even millions of components.
Data scientists need to address use cases that range from modeling individual customer behavior to understanding aggregate behavior, or exploring centrality of nodes within a graph to monitoring sensors from the Internet of Things for anomalous behavior. While R is cited as the most used statistical language, limitations of scalability and performance often restrict its use for big data. In this talk, we present architectural elements enabling high performance and scalability, highlighting scenarios both on Hadoop/Spark and database platforms using R. We illustrate how Oracle Advanced Analytics’ Oracle R Enterprise component and Oracle R Advanced Analytics for Hadoop enable using R on big data, achieving both scalability and performance.

avatar for Mark Hornick

Mark Hornick

Senior Director, Oracle
Mark Hornick is the Senior Director of Product Management for the Oracle Machine Learning (OML) family of products. He leads the OML PM team and works closely with Product Development on product strategy, positioning, and evangelization, Mark has over 20 years of experience with integrating... Read More →

Wednesday July 5, 2017 1:48pm - 2:06pm CEST
3.02 Wild Gallery
  Talk, HPC